

FP150: Comparative Summary

Mortars and Board Systems

1. FP150 vs. Insulating Mortars – Technical & Economic

Technical Comparison

- Thermal conductivity (λ): FP150 = 0.048 W/m·K vs. insulating mortars = 0.07–0.09 W/m·K \rightarrow FP150 insulates better.
- Weight: FP150 is $150-160 \text{ kg/m}^3$, making it $2-3 \times \text{lighter than insulating mortars (~350-400 \text{ kg/m}^3)}$.
- Layer thickness: FP150 can be applied in a single layer up to 15 cm, or up to 40 cm with formwork, while insulating mortars allow only 8–10 cm.
- Fire safety: FP150 has an A2-s1-d0 fire rating, significantly higher than insulating mortars.

Economic Comparison

• FP150 cost/m² both at 10 cm thickness and at 15 cm thickness is 30–40% cheaper per m² than insulating mortars, while performing better.

2. FP150 vs. Insulation Boards (EPS, XPS, Rockwool)

Detailed Cost Comparison (Material + Labor) – Example at 10 cm thickness for 100 m²

Category	FP150 (€)	EPS/XPS (€)	mineral wool (€)
Material cost (€/m²)		+53.28%	+57.29%
Labor cost (€/m²)		+23.85 %	+38.27 %
Total cost (€/m²)		+38.30 %	+47.55 %
Δ vs FP150 (%)		+38.3%	+47.6%

Summary of Findings:

- EPS/XPS in average 30-40% more expensive than **FP150**
- Rockwool in average 40-50% more expensive than FP150
- **FP150** is the lowest-cost option, while also delivering superior fire safety, recyclability, acoustic insulation, no waste or cold bridges.

3. FP150 - Consolidated Unique Selling Points (USP)

Technical Advantages

- **High insulation**: $\lambda = 0.048 \text{ W/m} \cdot \text{K}$, better than typical insulating mortars.
- Lightweight: 150–160 kg/m³ (2–3× lighter than standard mortars).
- Single layer: Up to 15 cm (40 cm with formwork).
- Fire resistance: A2-s1-d0 (superior to EPS, which is E/F class).
- Acoustic insulation: +14 dB at 500 Hz.
- Durability: Hydrophobic, vapour-permeable, and rodent-resistant.

Practical Advantages

- Zero cutting waste: Boards lose ~15% on-site; FP150 has none.
- 100% recyclable: Compared to 30% for EPS and 0% for mineral wool.
- Easy application: Uses standard plastering equipment, no special tools needed.
- No anchors, no cold bridges: Unlike board systems.
- Moisture tolerance: Can be applied on damp substrates, ideal for renovations.
- Faster installation: One layer instead of 5–6 layers for boards.

Economic Advantages

- Mortars: **FP150** is 30–40 % cheaper per m² at the same U-value.
- Boards: Cheaper than Rockwool and competitive with EPS/XPS.
- Lifecycle benefits: No waste, fully recyclable, lower carbon footprint.

4. Positioning Statement

FP150 combines 0.048 λ -value, A2 fire rating, acoustic insulation, and vapor openness in a single monolithic layer (15–40 cm), replacing both insulating mortars and board systems.

- "One layer replaces five."
- Cheaper than mineral wool, safer than EPS, faster than mortars.
- No waste, no cold bridges, 100% recyclable.